Evaluating clouds and radiation in the CCCma AGCM using CERES data

Jason Cole1
Howard Barker2
Norman Loeb3
Knut von Salzen1

1Canadian Centre for Climate Modelling and Analysis
2Cloud Physics and Severe Weather Research Division
3NASA Langely

June 9, 2009
Introduction

Evaluate clouds and radiation simulated by GCMs
Most AGCMs use TOA fluxes as part of model tuning
⇒ Makes evaluation of cloud radiative effects difficult
Are you getting the right answer for the right reasons?
Evaluate clouds and radiation simulated by GCMs
Most AGCMs use TOA fluxes as part of model tuning
⇒ Makes evaluation of cloud radiative effects difficult
Are you getting the right answer for the right reasons?

Break down cloud properties and radiative effect:
Cloud types (Webb, 2001; Chen, 2000)
Cloud objects (Xu, 2005)
Introduction

Evaluate clouds and radiation simulated by GCMs
Most AGCMs use TOA fluxes as part of model tuning
⇒ Makes evaluation of cloud radiative effects difficult
Are you getting the right answer for the right reasons?

Break down cloud properties and radiative effect:
Cloud types (Webb, 2001; Chen, 2000)
Cloud objects (Xu, 2005)

Evaluate properties as function of cloud top exposed to space
Cloud top exposed to space diagnostics

Computation of domain-mean flux using ICA

\[
\langle F_{ICA} \rangle = (1 - A_c)F^{clr} + A_c \int p(\tau)F_{1D}(\tau)d\tau
\]

\[
\langle F_{ICA} \rangle = (1 - A_c)F^{clr} + \sum_{i=1}^{i=M} A_{c,i} p_i(\tau)F_{1D,i}(\tau)d\tau
\]
Cloud top exposed to space diagnostics

Observable from passive instruments
Can infer $F_{1D,i}$ from CERES and MODIS
Diagnose easily from GCM (esp. using McICA)

Subgrid cloud structure

- McICA
 - Solar fluxes
 - Infrared fluxes
 - Heating rates
- Cloud props
 - Cloud amount
 - Optical thickness
 - Water contents
 - Particle sizes
Daily data and GCM output

Observations
CERES July 2001-2005
Daily means computed from TERRA SSF data
Cloud props for low, middle and high clouds exposed to space
Radiative fluxes at TOA derived from MODIS and CERES data
24-hour solar fluxes computed assuming constant meteorology
Daily data and GCM output

Observations
CERES July 2001-2005
Daily means computed from TERRA SSF data
Cloud props for low, middle and high clouds exposed to space
Radiative fluxes at TOA derived from MODIS and CERES data
24-hour solar fluxes computed assuming constant meteorology

AGCM simulations
Two developmental, tuned, versions of CCCma AGCM
T63, 35 levels
GCM15G \rightarrow January 2008 (McICA implemented)
GCM15H \rightarrow January 2009
GCM15G \Rightarrow GCM15H several changes to clouds and radiation
Sampled along TERRA orbit
July climatology (GCM15H)

TOA all-sky albedo

TOA clear-sky albedo

Total cloud fraction

Cloud liquid water path

Solid line ⇒ obs, Dashed line ⇒ GCM15H
Sampling effects (Low cloud fraction July 2003)

Low cld frac all data

Low cld frac TERRA orbit

TERRA-ALL

AQUA-TERRA
Sampling effects (Low cloud fraction when present)

Low cld. frac. (July 2003)

- Solid line ⇒ obs
- Dashed red line ⇒ GCM15G
- Dashed black line ⇒ GCM15H

Daily mean low cld. frac. (July 2001-2005)

- Solid line ⇒ obs
- Dashed red line ⇒ GCM15G
- Dashed black line ⇒ GCM15H
Zonal means (July 2001-2005)

Computed using gridboxes with cld. frac. > 5%
Cloud inhomogeneity decreases as ν increases

$$p(\tau) = \frac{1}{\Gamma(\nu)} \left(\frac{\nu}{\bar{\tau}} \right)^\nu \tau^{\nu-1} e^{-\nu \tau / \bar{\tau}}, \; \nu = \left(\frac{\bar{\tau}}{\sigma} \right)^2$$

Solid line ⇒ obs
Dashed red line ⇒ GCM15G, Dashed black line ⇒ GCM15H
Need for consistency – ν parameter

GCM15G radiation code used minimum ν for “cloud blocks”

cloud blocks \Rightarrow Adjacent cloudy layers

Necessary simplification for analytic solution
Need for consistency – \(\nu \) parameter

GCM15G radiation code used minimum \(\nu \) for “cloud blocks”

Cloud blocks \(\Rightarrow \) Adjacent cloudy layers

Necessary simplification for analytic solution
Solar cloud radiative effect

TOA solar cloud radiative effect (JJA)

SWCF (W/m^2)

Latitude

CERES EBAF
block \(\nu \)
layer \(\nu \)
Binning by pressure and cloud τ (20°S – 20°N)
Histograms of daily-means low clds (20°S – 20°N)

Black line ⇒ obs
Red line ⇒ GCM15G, Purple line ⇒ GCM15H
Summary

Diagnostic can highlight biases in GCM clouds and radiation
Direct link between cloud properties and radiation
⇒ Not inferred radiative effects

Straightforward to implement in GCMs with McICA
Couple with information from CloudSat/CALIPSO and COSP
⇒ Further analyse cloud vertical structure