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Abstract Passive scalar behavior is important in turbulent mixing, combustion,
and pollution and provides impetus for the study of turbulence itself. The conceptual
framework of the subject, strongly influenced by the Kolmogorov cascade phenom-
enology, is undergoing a drastic reinterpretation as empirical evidence shows that local
isotropy, both at the inertial and dissipation scales, is violated. New results of the
complex morphology of the scalar field are reviewed, and they are related to the
intermittency problem. Recent work on other aspects of passive scalar behavior—its
spectrum, probability density function, flux, and variance—is also addressed.

1. INTRODUCTION

A passive scalar is a diffusive contaminant in a fluid flow that is present in such
low concentration that it has no dynamical effect (such as buoyancy) on the fluid
motion itself. A weakly heated flow, such as an air jet, exhibits passive scalar
mixing as the cooler air is entrained from the surroundings. Moisture mixing in
air and dye in water provide other typical examples. When two chemicals are
independently introduced into a fluid, turbulence provides the efficient mixing
that enables the reactions or combustion to occur at the molecular level. An
understanding of passive scalar behavior is a necessary first step in understanding
these processes. The subject of flow visualization depends on interpreting how a
passive scalar is related to the velocity field itself.

The scope of this review is as follows: Passive scalar fluctuations are intro-
duced into a simple turbulent flow (Figure 1). We ask, what are the statistical
characteristics of the scalar, such as its probability density function (pdf) and
structure function (or spectrum), and how do the observations relate to theory?
We define simple turbulent flows as those that are steady in time and have a single
imposed length scale. They fall into two categories: shear flows (jets, wakes, and
boundary layers) and shear-free flows (grid-generated turbulence). For laboratory
shear flows, the scalar is usually introduced as a whole (e.g. by weakly heating
the jet or the wall of the boundary layer), whereas in the atmospheric boundary
layer, it is generally introduced from point or area sources. For grid turbulence,
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Figure 1 Shear flow (a jet) and grid turbulence. U and T are the mean velocity and
temperature respectively, x is the stream-wise direction and y is transverse to it. (a) In the
jet, the warm air mixes with the cool ambient air, and scalar fluctuations are produced
throughout. (b) Grid-generated turbulence. Here a mean scalar gradient can be produced
before the grid in the plenum chamber, and the scalar fluctuations and flux are then pro-
duced by the action of the grid. Corrsin (1952) showed, ignoring wall effects, that the
mean gradient will sustain itself (with x) because the turbulence is isotropic and there is
no flux divergence. Temperature fluctuations without a mean gradient can also be formed
by heating the grid or by means of fine wires placed downstream of the grid. In both of
these cases the temperature variance decays.

scalar fluctuations may be produced by imposing a mean scalar gradient on the
flow. Alternatively, by using an array of finely heated wires in proximity to the
grid (or heating the grid itself), fluctuations in the scalar may be achieved without
the existence of a mean scalar gradient.

The dynamics of the passive scalar field, U, are governed by the convection-
diffusion equation
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2]H/]t ` 8 ]H/]x 4 j¹ H, (1)j j

where j is the diffusivity and 8j is the velocity [and repeated indices imply
summation: j 4 1, 2, 3 are the velocity components in the x (streamwise), y, and
z directions, respectively]. For much of this review, we have in mind temperature
as the scalar, and thus j is the thermal diffusivity, but the formalism applies to
any other passive scalar. Equation 1 is linear in U, and thus it may be thought
that the scalar problem would be a footnote to the turbulence problem (i.e. the
velocity field) itself. The accumulated knowledge over the past 30 years has
shown this to be far from the case. Indeed, much of this review is devoted to
showing that the cherished paradigms for the velocity field often fail when applied
to the scalar.

There has tended to be a certain division between the way engineers and
physicists approach the subject. The engineers’ interest is in the transport and
mixing properties of the scalar, and from this perspective, the focus has been in
determining how the variance and flux (integral-scale properties) vary in space
and time within particular flows. These quantities are strongly affected by bound-
ary conditions. The physicists, with their quest for universality, have concentrated
on inertial and dissipation scales, the hope being, if the Reynolds (Re) and Peclét
(Pe) numbers are high enough, that the small-scale behavior will be independent
of the large scales. We address both the large and small scales in this review and
argue that this division is artificial and dangerous. The experimental evidence
shows that the large and small scales are strongly coupled and that the traditional
cascade picture, which promotes the notion of universality, is a crude represen-
tation. And if the engineer is going to progress in determining reaction rates,
dispersion and mixing, then he or she must focus on the small scales and their
morphology, because it is here that the strong departures from simple Gaussian
behavior occur. The resulting skewed and intermittent fluctuations play a vital
role in effecting the ultimate smearing and mixing at the molecular scale, where
reactions and combustion occur.

The most comprehensive review of the passive scalar problem in the past
decade is by Sreenivasan (1991). This is devoted mainly to the small-scale scalar
anisotropy in shear flows (Section 4 of this review) but provides excellent insight
into the scalar problem in general. Scalars are also addressed in parts of the review
by Sreenivasan & Antonia (1997), which is mainly devoted to the velocity struc-
ture [other recent reviews of the velocity field are by Nelkin (1994), Frisch
(1995)]. The reviews by Van Atta (1991) and by Zeldovich et al (1988), the book
by Lesieur (1997), and the conference proceedings of Boratav et al (1997) also
attend to passive scalars. Descriptions of the formalism of Obukhov-Corrsin scal-
ing and the anomalous scaling problem are in Monin & Yaglom (1975). Most
recently the subject has been reviewed from a theoretical viewpoint by Shraiman
& Siggia (1999). Their review complements the experimental perspective of the
present work (particularly Sections 4 and 5).
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The review is organized as follows. In Section 2 we briefly outline the tradi-
tional phenomenology. In Section 3 we provide recent results on the scalar spec-
trum. In Section 4 we show that the scalar fluctuations, even at the smallest scales,
are anisotropic, in violation of the generally accepted return-to-isotropy picture.
We review recent advances in describing the morphology of the scalar field in
both the dissipation and inertial subranges, focusing on third-order statistics. In
Section 5 we extend this discussion to higher-order statistics. In Section 6 we
examine the fluctuating scalar itself by looking at its pdf as well as the covariance
and scalar fluxes. Finally, in Section 7 we look at passive scalars for which the
Prandtl (or Schmidt) number is significantly different from unity.

2. SOME PRELIMINARIES CONCERNING
PHENOMENOLOGY

The scalar and velocity fields may be decomposed into mean and fluctuating
components, U 4 T ` h and 8i 4 Ui ` ui. Typical time series of u and h and
their time derivatives are shown in Figure 2. In many problems, determining the
scalar variance, ^h2&, flux, ^huj&, and mean scalar dissipation rate, ^eh& (defined
below), are of prime importance. This inevitably leads to an investigation of the
statistical nature of h and eh themselves.

At the outset, scalar phenomenology was based on the Kolmogorov 1941
hypothesis (Monin & Yaglom 1975, Frisch 1995). Thus Obukhov (1949) and
Corrsin (1951) argued that, at high Re and Pe [Pe [ (m/j)R,, where R, [
^u2&

1⁄2,/m], there will be a cascade to small scales, where the scalar field will
become locally isotropic. Although we show in Section 4 that, in fact, the dissi-
pation and inertial scales are anisotropic (reflecting the large-scale structure), it
would be perverse to neglect the scaling that results from the Kolmogorov-
Obukhov-Corrsin (KOC) argument. Thus the KOC prediction for the one-
dimensional scalar spectrum is

11/3 15/3F (k ) 4 C ^e& ^e &k , (2)h 1 h h 1

where , k1 is the longitudinal wave number, and Ch is a uni-`2^h & 4 * F (k )dk0 h 1 1

versal constant. The corresponding relation for the velocity field is

2/3 15/3F(k ) 4 C^e& k , (3)1 1

where C is a universal constant. The issue of the universality of Ch and C, the
applicability of Equations 2 and 3, and what constitutes high Re and Pe are
discussed in Section 3.

Both the scalar and velocity fields are observed to exhibit small-scale (internal)
intermittency characterized by strong variability in dissipation and mixing rates,
and departures from KOC scaling for higherorder statistics (Monin&Yaglom1975,
Lesieur 1997, Frisch 1995). As a consequence e 4 m[(]ui/]xj ` ]uj/]xi) (]uj/]xi)]
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Figure 2 Time-series of the longitudinal velocity fluctuations, u, and the temperature
fluctuations, h, and their derivatives. The flow is grid-generated turbulence with a mean
temperature gradient transverse to the flow. The Rk 4 582, and the kurtosis of ]u/]t and
]h/]t are 9.5 and 27.4, respectively [that of ]v/]t (not shown) is 12.2]. The series are taken
from the data of Mydlarski & Warhaft (1998a). Similar time series are observed in shear
flows (e.g. Meneveau et al 1990).

and eh 4 2j(]h/]xi)(]h/]xi) have non-Gaussian statistics. Much of our evidence
of the behavior of eh is based on measurements of (]h/]t)2 ; U2(]h/]x)2, us-
ing Taylor’s hypothesis (Hinze 1975). (]h/]t)2 is often called the surrogate of
(]h/]xi)(]h/]xi). The strongly non-Gaussian statistics of ]h/]t are evident from
Figure 2. Notice the sharper steps in the h time series than in the u. These give
rise to a more intermittent time derivative. This is typical of all turbulent flows
with passive scalars. Indeed, it is possible for intermittency in the scalar to occur
in a purely Gaussian velocity field (Kraichnan 1994, Holzer & Siggia 1994, and
Section 5).

The pdf of the ]h/]t with its characteristic stretched exponential tails is shown
in Figure 3a. Moreover, as for the velocity field (Sreenivasan & Antonia 1997,
Nelkin 1994), the non-Gaussian behavior extends to scales that are larger than
the dissipation scale, g [ (m3/^e&)1/4. Thus scalar differences, Dh(r) 4 h(r) 1
h(0), for ,h . r . gh are nonGaussian and intermittency is observed at inertial
range scales as well as at the dissipation scales. (gh is the scalar dissipation scale.
The situation in which gh is significantly different from g is discussed in Section
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Figure 3 (a) The probability density function (pdf) of the passive scalar difference
Dh(r)/^[Dh(r)]2&1/2 as a function of r within the inertial subrange. The solid curve is the
derivative pdf (r ; g) and as r increases the curves tend towards Gaussian. (b) The kurtosis,
K, of the scalar difference as a function of r for the same data as for (a). For the smallest
r this is the derivative kurtosis. (For this figure r is normalized by the integral scale.) Both
(a) and (b) are from the direct numerical simulations of Chen & Kraichnan (1998) using
a white-noise velocity field. [For these statistics white-noise computations compare well
with laboratory measurements, reproducing similar values of K at the same Rk (see for
example Mydlarski & Warhaft 1998a). In Section 5 we describe results where the white-
noise simulations show significant differences to laboratory measurements.] (c) The vari-
ation of the kurtosis of the temperature derivative as a function of Rk. The plus signs are
the shear-flow data compiled in figure 8 of Sreenivasan & Antonia 1997. The lower Rk

data are from the recent grid turbulence measurements of Mydlarski & Warhaft (1998a)
(see their Figure 23b), and Tong & Warhaft 1994 (see their figure 8a). Circles are the
longitudinal derivative, and squares are the transverse derivative (along the temperature
gradient). (For data concerning the kurtosis of the velocity field, see Sreenivasan & Antonia
1997).
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Figure 3 Continued

7.) Figure 3a also shows how the pdf varies with r, and Figure 3b shows the
kurtosis of the temperature difference KDh(r), defined as

4 2 2K (r) [ ^Dh(r) &/^Dh(r) & . (4)Dh

It tends to the Gaussian value (of 3) at only large scales. As the Re increases, the
kurtosis increases too (Figure 3c). Clearly, a full description of the scalar statistics
requires information of the higher-order moments. Traditionally, structure func-
tions (rather than spectra) have been used. They are defined as ^Dh(r)n&, where n
is a positive integer. The difference may be taken in any direction (e.g. along or
transverse to the gradient), and it will be shown that the direction plays an impor-
tant role. (Similarly, higher-order structure functions have been defined, and much
more studied, for the velocity field that has qualitative similarities with the scalar)
(Sreenivasan & Antonia 1997, Nelkin 1994, L’vov & Procaccia 1997).

KOC scaling (^Dh(r)n& 4 fn (^e&,^eh&,r)) implies

n n/3^Dh(r) & ; r . (5)

(For n 4 2, ^Dh(r)2& ; r2/3, which Fourier transforms to the 15/3 spectrum.)
From Equation 5, it follows that KDh (Equation 4) is constant (with r), and this is
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clearly violated by the measurements (Figure 3b). This is the so-called anomalous
scaling problem.

It is important to emphasize that there are apparently two distinct aspects
absent from the KOC phenomenology—the departure from local isotropy at the
small scales and the internal intermittency. It is one of the objectives of this review
to show that they are intimately related.

To cope with the intermittency and thus the non-Gaussian statistics for the
velocity field, Kolmogorov (1962) and Obukhov (1962) introduced the integral
scale as an added parameter in the scaling of the structure functions. In analogy
with the velocity field, the nth-order scalar structure functions now scale as

n fn^Dh(r) & ; (r/,) . (6)

(To see the scaling anomaly, Equation 6 may be written as n^Dh(r) & ;
, where is the departure from KOC scaling.) Realizability con-n/3 1d 1dn nr (r/,) (r/,)

ditions (Frisch 1995, Kraichnan 1994) require that dfn/dn be a nonincreasing
function of n (for KOC scaling, it is constant). Notice that KDh (Equation 4)
accordingly scales as . Its experimental form (Figure 3b) indicates 2f2

f 12f4 2(r/,)
. f4, consistent with the realizability condition. Predicting fn has become a central
preoccupation in recent years, and we return to it in Section 5, in which we also
elaborate on other aspects of scalar intermittency. Here we note that the above
scaling is cast in the form of the two-point structure functions, yet a description
of higher-order statistics more generally requires multipoints.

Because the inertial-range structure functions are affected by the intermittency,
it should be evident that scalar differences Dh(r) are conditioned by the instan-
taneous dissipation rate of the scalar. Exploring this dependence is the subject of
the refined similarity hypothesis (RSH) for the passive scalar (Korchashkin 1970,
Van Atta 1971, Antonia & Van Atta 1975, Stolovitzky et al 1995). (For the RSH
for the velocity field itself, see Frisch 1995). Thus it follows (Stolovitzky et al
1995) that

1/6 1/2V 4 Dh(r)[(re ) /(re ) ], (7)h r hr

where Vh is a nondimensional stochastic variable, and er and ehr are the dissipation
rates of turbulence energy and scalar variance averaged over a sphere of radius
r. The RSH states that, for high Re and Pe, the conditional pdf of Vh for a given
er and ehr should be universal. Experiments (Stolovitzky et al 1995, Zhu et al
1995) tend to provide support for this hypothesis, showing an approximately
Gaussian form for the pdf of Vh, although Zhu et al (1995) show some flow
dependence, with the atmospheric pdf tending to have a slightly broadened tail
compared with the Gaussian distribution. Statistics of Dh(r) conditioned on
r1/3 show a strong linear dependence on r1/3 , in agreement with11/6 1/2 11/6 1/2e e e er hr r hr

the RSH (Zhu et al 1995, Mydlarski & Warhaft 1998a, Stolovitzky et al 1995).
Yet Stolovitzky et al (1995) make the important point that RSH for the scalar
may not be a sensitive test of universality of the scalar, because other statistics
of the scalar [such as the derivative skewness (see Section 4)] show distinct
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departures. They suspect that the process of taking the conditional expectations
masks departures from universality.

Finally, it is important that there is one exact, model-independent result. It is
for the scalar-mixed moment at high Pe and Re

2^[u(r)][Dh(r)] & 4 1(4/3)^e &r. (8)h

This equation, from Yaglom (1949), is the scalar equivalent to the Kolmogorov
4/5 law, ^[Du(r)]3& 4 1(4/5)r ^e&. As for the 4/5 law (Frisch 1995), its derivation
assumes global homogeneity. In the wind tunnel (Mydlarski & Warhaft 1998a),
Equation 8 appears to be reasonably well obeyed for Rk . 400. Chambers &
Antonia (1984) also obtain good agreement in the atmospheric boundary layer.
Boratav & Pelz (1998) numerically study the higher-order mixed-velocity and
-temperature structure functions. Their analysis suggests that there may be an
enhanced scaling anomaly for the higher-order mixed moments.

3. THE SPECTRUM OF THE PASSIVE SCALAR
FLUCTUATIONS

Sreenivasan (1996) has compiled data of the scalar spectrum slope at various Re
for shear flows. This is redrawn in Figure 4. Apparently, the 15/3 spectrum is
approached when Rk ; 103 1 104. Here we define the Reynolds number in terms
of the Taylor microscale; that is, Rk [ ^u2&1/2k/m, where k is defined by ^u2& 4
k2^(]u/]x)2&. Sreenivasan shows that the transverse velocity spectrum evolves in
a similar way to the temperature spectrum, yet the longitudinal velocity (u) has
a 15/3 slope at very low Rk (;50). Here, then, the mystery is why the u com-
ponent achieves the high Re limit at such low Rk.

The second-order structure function is the Fourier transform of the spectrum,
yet measurements in shear flows (Antonia et al 1984, Ruiz-Chavarria et al 1996)
indicate a scaling range of 2/3 (corresponding to a 15/3 spectrum), for moderate
Re in conflict with the spectrum observations (Figure 4). The reason for this is
unclear, but apparently stems from the Fourier transform itself. A spectrum bump
(bottleneck phenomenon) is observed at high wave numbers, just before the dis-
sipation range (Champagne 1978, Mestayer 1982, Tatarskii et al 1992, Mydlarski
& Warhaft 1998a]. It is possible that, at low and moderate Rk, this bump affects
the whole spectrum, deceptively indicating a lower spectrum slope than 5/3. Why
this is not reflected in the structure function is unclear, although insight into this
in terms of bottleneck phenomena has recently been provided by Lohse & Müller-
Groeling (1996) for the velocity field. The issue, which is essentially analytic,
requires further attention. Its resolution may change the picture displayed in Fig-
ure 4.

Although very high Rk is required before the 15/3 temperature spectrum is
observed in shear flows, the opposite is observed in isotropic-grid-generated



212 WARHAFT

Figure 4 The variation in the spectral slope for various passive scalar spectra as a func-
tion of Rk. For shear flows (filled squares), there is a slow evolution toward 5/3, which
appears to be approached at large Rk (.2000). The filled circles are the spectral slopes for
grid turbulence experiments (no shear). They are close to 5/3 even at very low Rk. The
shear-flow graph is from Sreenivasan 1996 (see also Sreenivasan 1991). The grid turbu-
lence results are from Mydlarski & Warhaft 1998a.

(shearless) turbulence (Figure 4). At very low Rk, there is a well-developed scaling
range, close to 15/3 (Yeh & Van Atta 1973, Warhaft & Lumley 1978, Jayesh et
al 1994, Mydlarski & Warhaft 1998a), whereas there appears to be none at all for
the velocity field [or at most a small range of slope around 11.3 (Jayesh et al
1994)]. For this flow without mean strain, the mere existence of a multiplicity of
scales is apparently enough to produce the 15/3 scalar spectrum. We see later
that many other observed characteristics of the scalar are independent of the
details of the velocity field (and its Re), a point recognized early by Kraichnan
(1968).

To determine the Obukhov-Corrsin constant Ch, ^eh& must be estimated. If the
small-scale temperature field is isotropic, then ^(]h/]x)2& 4 ^(]h/]y)2& 4
^(]h/]z)2&. Yet a number of workers (Budwig et al 1985, Thoroddsen & Van Atta
1996, Tong & Warhaft 1994 in grid turbulence, and Sreenivasan et al 1977 in
shear flow) find that ^(]h/]y)2& ; 1.4^(]h/]x)2&, where y is in the direction of the
mean gradient. For grid turbulence, this small-scale anisotropy at the second order
appears to be independent of Rk (Mydlarski & Warhaft 1998a), but all measure-
ments have been done by using similar techniques (using spaced wires), and the
result, which is important, requires checking by other means. In an extensive
literature survey, Sreenivasan (1996), assuming isotropy, estimates Ch to fall in
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the region 0.3–0.5, with much scatter. For shear flows he uses only high-Re-
number atmospheric data, because (Figure 4) a 15/3 spectrum, is not observed
at low Rk, and so Ch (Equation 2) is not defined. His estimate of Ch for grid
turbulence at low Rk is also in the same range. More recently, Mydlarski &
Warhaft (1998a) estimate Ch to be in the range 0.45–0.55 over a large range of
Rk, using an active grid. They take into account the measured anisotropy. The
value of the Kolmogorov constant C (Equation 3) is also ;0.5 for a large class
of flows and Re (Sreenivasan 1995), at least for Rk $ 200.

The above results indicate that, even for the very highest Re that can be gen-
erated in the laboratory or in the atmosphere and oceans, the scalar spectrum is
determined by more than eh, e, and k. Boundary conditions play an important
role, with shear flows behaving quite differently from nonshear flows. The obser-
vation that, for grid turbulence, a 15/3 scalar spectrum is observed at a low Re
in the absence of scaling in the velocity field is particularly intriguing. Finally,
internal intermittency, according to Kolmogorov (1962) phenomenology, should
affect the slope of the scalar spectrum. As for the velocity spectrum (Nelkin 1994),
its effect should be too small to observe experimentally.

4. THE BREAKDOWN OF THE CLASSICAL
PHENOMENOLOGY: THE ISSUE OF LOCAL ISOTROPY

The central assumption in KOC scaling is that, at small scales, the scalar (and
velocity) field is isotropic in the limit of infinite Re and Pe. Isotropy is also
implicit in the intermittency corrections to the simple scaling theory. In Section
3 we indicated that this assumption may be violated at the second order, although
the departure from isotropy is relatively small. Here we show that, at the third
order, the local isotropy assumption breaks down entirely and that the large-scale
behavior of the scalar is directly reflected at the inertial and dissipation scales.

The first cautions appeared over 30 years ago, when Stewart (1969), reporting
high-Re-scalar measurements in the atmospheric boundary layer (ABL), showed
that the scalar derivative skewness

3 2 3/2S [ ^(]h/]x) &/^(]h/]x) & (9)]h/]x

was of the order one and not zero, which is required for local isotropy in the limit
of high Re. [Conventional scaling arguments (see below) indicate S]h/]x ; .11Rk

Atmospheric measurements are in the range Rk ; 103 1 104]. Since then there
has been a constant stream of experimental papers, both in the atmosphere and
laboratory, showing the lack of scalar isotropy at both the dissipation and inertial
scales. The earlier papers focused on the derivative skewness (Gibson et al 1970,
Freymuth & Uberoi 1971) and the problems of possible probe contamination
(Wyngaard 1971, Mestayer et al 1976). By the late 1970s it was clear that the
effect was real and ubiquitous. Traces of the scalar signal (Figure 5a) showed
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Figure 5 (a) A time series of temperature in a heated jet showing the ramp-cliff structure,
from Sreenivasan et. al (1979). (b) Temperature spatial variation from numerical simula-
tions of Holzer & Siggia (1994) with a mean temperature gradient. The full scalar is the
top trace. The other traces are of the fluctuating component only.

characteristic ramp-cliff structures (Gibson et al 1977, Sreenivasan & Antonia
1977, Mestayer et al 1976, Sreenivasan et al 1979). The magnitude of the skew-
ness caused by these structures appears to be independent of Re although a sys-
tematic study for specific shear flows is still needed (see Sreenivasan 1991 for a
summary of data from shear flows; grid flows are discussed below). An analysis
of the temperature structure functions, by Van Atta (1971) and by Antonia & Van
Atta (1978) for the ABL and for a heated jet, showed that the odd-order structure
functions (which should vanish at high Re if the scalar field is isotropic) have
clear scaling ranges, indicating that the anisotropy is not confined to the dissi-
pation ranges.

All of the above measurements were for external flows that contain large-scale
intermittency (caused by excursions of ambient air entraining the fluid) as well
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as internal intermittency. Any lingering doubt that the structures were caused by
the complexity of these shear flows was dispelled by grid turbulence measure-
ments (Tavoularis & Corrsin 1981b, Budwig et al 1985, Tong & Warhaft 1994)
and the numerical simulations of Pumir (1994). Here, too, the derivative skewness
was observed along the mean gradient despite the absence of entrainment and
large-scale velocity anisotropy. Even more remarkably, the same ramp-cliff struc-
tures were observed in numerical simulations of Holzer & Siggia (1994) (Figure
5b). Here the turbulence was two dimensional and Gaussian, with none of the
fine scale structure observed in real turbulence. Apparently only a multiplicity of
scales, acting against an imposed mean temperature gradient, is all that is required
to obtain the persistent anisotropy.

Insight into the ramp-cliff structures was achieved by mapping, in a plane jet,
the isocontours of velocity and temperature (Antonia et al 1986). Large-scale
velocity structures (or eddies) form converging and diverging separatrix and sad-
dle points (Figure 6a). These must occur in all flows, but in shear flows they are
inclined, on average, along the same direction as the principle strain (at ;408 for
a jet). If a passive scalar field is formed in the flow, a temperature front will occur
at the diverging separatrix. The front demarks the cool and warm fluids entrained
by the two counterflowing structures (Antonia et al 1986). While the ramp-cliff
structures are large-scale features, on the order of an integral scale (e.g. Gibson
et al 1977), the front itself is sharp, and thus is manifested at the small scales.
Tong & Warhaft (1994) showed that, as the Re increases, the fronts become
sharper and more intense, occurring deeper in the tails of the pdf. It is this com-
bination of large- and small-scale characteristics that provides the challenge to
simple scaling.

All turbulent flows, be they with or without shear, must contain large eddies.
In the no-shear case, the saddle points are randomly oriented. However, if a mean
temperature gradient is applied to the flow, the diverging-converging separatrices
that happen to be aligned with the mean gradient cause ramp-cliff structures. This
is clearly shown in the numerical simulations of Holzer & Siggia (1994). The
stream functions (Figure 6b) are similar in character to those observed in the shear
flow (Figure 6a). A temperature front (Figure 6c) forms at the diverging separa-
trix. We surmise that had we not been imbued with the Kolmogorov phenome-
nology, the above picture of a fundamentally anisotropic scalar field would seem
natural. We would expect that, as the large eddies act on the scalar gradient, large
discontinuities might occur. It is the very strong attraction to universality that has
diverted our attention.

Since Sreenivasan’s 1991 review, which is mainly devoted to the derivative
(rather than inertial-scale) anisotropy in shear flows, there have been develop-
ments, theoretical, numerical, and experimental, for the inertial and dissipation
ranges for the simple situation of a linear temperature profile in isotropic grid
turbulence (Figure 1b), which we now outline.

First it is important to emphasize that in this flow, because of symmetry, any
odd moments in x must be zero, and this has been observed (e.g. Tong & Warhaft
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Figure 6 (a) The diverging-converging velocity separatrix of the plane jet of Antonia et
al (1986) (the observer is traveling at the convection velocity). (b) The stream functions
from numerical simulations of Holzer & Siggia (1994) show the same pattern, but unlike
the jet, this pattern is directionally unconstrained because the turbulence is isotropic (no
shear). (c) Temperature isocontours in the same flow as b, showing the cliff along the
saddle point. The mean scalar gradient is in the x (horizontal) direction.

1994, Tavoularis & Corrsin 1981b). The local-isotropy hypothesis also requires
that these moments in the y direction (Figure 1b) must be zero, but this is not the
case, because of the very existence of the ramp-cliff structures. We also note that,
in shear flows (Figure 1a) odd-order moments are nonzero in both the x and y
directions. Thus, in heated shear flows, a single probe will measure ramps and
cliffs, but it requires an array (in the y direction) to observe them in the linear-
temperature-profile case. Note that, in the x time series of Figure 2, the ramp-
cliffs are not in evidence because of this. [There is, however, a low probability
that a ramp-cliff may occur transverse to the gradient (see Tong & Warhaft 1994,
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Figure 7 The skewness structure function SDh(y) [ ^[Dh(y)]3&/^[Dh(y)]2&3/2 as a function
of y/g for grid turbulence with a linear temperature gradient in the y direction (from
Mydlarski & Warhaft 1998a). Open circles, squares, filled circles, and crosses are Rk 4
99, 222, 247, and 461, respectively. Notice the plateau for Rk . 200.

Figure 7). We show below that, although the preferred direction is along the
gradient, their orientation fluctuates].

As for the shear-flow case (Antonia & Van Atta 1978), the third-order structure
function exists, with a scaling-range of slope 0.9–1.0 and with little Re depen-
dence (Mydlarski & Warhaft 1998a). Figure 7 shows the normalized third-order
structure function (skewness structure function), SDh [ ^Dh(y)3&/^Dh(y)2&3/2. As Rk

increases, the structure function levels off to a clearly defined plateau. Because
the mean gradient is the reason for the existence of ^Dh(y)3&, following Lumley
(1967) we include it (to the first order) in a Kolmogorov scaling estimate, such
that ^Dh(y)3& ; dT/dy fn(^e&,^eh&,y). This yields ^Dh(y)3& ; y5/3 and SDh ; y2/3.
Thus the observed (y-independent) scaling is in contradiction to the Kolmogorov
picture. Note (Figure 7) that for D/g r 1, SDh r S]h/]y, the derivative skewness.
Its value is 2(1) and does not depend on Re. [This is further corroborated by
Mydlarski & Warhaft (1998a) for 30 # Rk # 730.] Kolmogorov scaling (in the
same vein as above) indicates , that is, the effect of the mean gradient11S ; R]h/]y k

is confined to low Re, in agreement with the return to isotropy principle. The fact



Figure 8 (a) The coordinate system for the three-point correlations. The flow is in the x direction. (b) The contour plot of the three-point
triple correlation ^hAhBhC&. The data are normalized by 1^hAhBhC&0,0 at the given transverse separation, which is y/, 4 0.051. Isocontours
are separated by 0.2. Dashed lines are negative, solid lines are positive (the 11 contour is the lowermost dashed line). (From Mydlarski &
Warhaft 1998b.)
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that S]h//]y does not change with Rk in either shear or unsheared flows indicates
that the return-to-isotropy principle is fundamentally flawed.

Traditional two-point statistics will not reveal the morphology of the scalar
field, and we turn to a three-point description. We first describe experiments and
then relate them to the theory. We are interested in seeing how the anisotropy is
manifested in the inertial (rather than the dissipation) range, and thus we require
a relatively high Re. The active grid (Mydlarski & Warhaft 1996) provides this
range (200 , Rk , 500).

Figure 8 shows the three-point triple correlation ^hAhBhC&. Obtaining this func-
tion from the two probes (using Taylor’s hypothesis and differencing techniques)
is not trivial, and it is described by Mydlarski & Warhaft (1998b). Known sym-
metry properties were imposed: the statistics must be even in x and odd in y. In
addition, because the function is even in x and , only the positive quadrantx81
( /y . 0) needs to be displayed. The nondimensionalization is byx81and2

and hence, for ( , the triple correlation is 11.1^h h h &| x8, x8) 4 (0,0)8 8A B C x 40,x 40 1 21 2

It can also be shown that ^hAhBhC&, because of the symmetries, must be zero when
the three points form an equilateral triangle (Pumir 1998). This occurs when

.(x8/y, x8/y) 4 (0,2/ 3)!1 2

For , the triple correlation reduces to the third-order trans-x8/y 4 x8/y 4 01 2

verse the three-point correlation function for a particular y value. The condition
, with increasing, yields the diagonal two-point correlation. Itx8/y 4 0 x8/y2 1

remains close to unity, indicating that the x dependency on the ramp-cliff struc-
tures (mainly oriented in the y direction) is relatively weak (Mydlarski & Warhaft
1998a,b). As B moves from C (increasing with fixed), the chance of bothx8/y x8/y2 1

of these points falling on the same side of a front (or cliff) diminishes. Thus the
magnitude of ^hAhBhC& diminishes. Its decrease is most rapid for ,x8/y 4 01

because here the triangle is always iscoceles. On the other hand, consider
(? 0) with increasing. Here we would expect the magnitudex8 /y 4 constant x8/y2 1

of the correlation to increase because, for , the triple correlation tendsx8/x8 k 11 2

to the two-point, third-order diagonal correlation. The curves of Figure 8 confirm
this. [The peeling off (at large ) is apparently caused by the finite inertialx8/y1

range.] The picture shown in Figure 8 is robust both in terms of the Re and
inertial-range spacing (Mydlarski & Warhaft 1998b).

The above measurement was motivated by the theoretical work of Shraiman
& Siggia (1995, 1996) and Pumir (1996a, 1997, 1998). They consider the Hopf
equation, which describes the multipoint correlators of the scalar. For white noise
it can be shown (Chertkov et al 1995, Gawedzki & Kupiainen 1995, Shraiman
& Siggia 1995) that lower-order correlators act as source terms for higher-order
ones and that there is a formal connection to Kolmogorov scaling. Shraiman &
Siggia (1995, 1996), recognizing, however, that white noise does not produce the
observed scaling for the third-order structure function (see Section 5), use a more
physical velocity field with spatiotemporal correlations. For this case the resulting
Hopf equation is phenomenological and contains a free parameter. They argue
that the correlator (from the Hopf equation) is highly symmetric and is integrable
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Figure 9 The contour plot of the three-point triple correlation computed from the theory
of Pumir, Shraiman, & Siggia. Same range as Figure 8. (From Mydlarski et al 1998).

by using Lie algebraic methods. Their computed results (Pumir 1997, 1998) yield
correct scaling for the third-order (two-point) structure function. Their calculated
three-point triple correlation is shown in Figure 9. It reproduces the main exper-
imental features of Figure 8.

A white noise model would produce results that are similar to those in Figure
9 since the normalization divides out the dominant effects of its incorrect scaling
exponent. The qualitative shape of Figure 9 can also be reproduced using a simple
step in the scalar that fluctuates randomly about its orientation along the mean
gradient (Mydlarski et al. 1998). Yet as the case for two point statistics, the
objective is to develop theory that can quantitatively account for the data.

We are so used to focusing on two-point statistics that it will take time to adjust
to three-point statistics, (Figures 8 & 9) which offer more to measure and compute
than traditional scaling. We expect that the same features for the scalar field will
be observed in shear flows, but it remains to be seen whether there is a significant
quantitative difference.

We emphasize that the above results are not pathological, but are inherent in
the nature of the way a scalar is mixed. The picture described suggests that the
scalar anisotropy should be independent of the details of the turbulence itself (as
long as it has a multiplicity of scales). Moreover, the ramp-cliff structures must
give rise to higher-order non-Gaussian effects in the scalar field, and this is
observed in the Holzer & Siggia (1994) numerics, in which the scalar kurtosis is
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greater than the Gaussian value of 3, and small-scale intermittency (in the strictly
Gaussian velocity field) is observed. We now turn to the issue of the higher-order
statistics.

5. HIGHER-ORDER STRUCTURE FUNCTIONS AND
INERTIAL SUBRANGE INTERMITTENCY

The anisotropy, manifested in the third-order statistics, is only in evidence when
there is a mean scalar gradient. In the absence of a mean gradient, the derivative
skewness is zero by symmetry (Budwig et al 1985, Tong & Warhaft 1994). The
instantaneous action of the large eddies must still produce sharp discontinuities
in an advected scalar field, but they have no preferred orientation (Figure 10) and
average to zero in any given direction. These discontinuities give rise to non-
Gaussian effects at the small scales, now manifested only in the higher-order even
moments. Thus the intermittency issue, outlined in Section 2, is closely related
to the anisotropy issue discussed in Section 4. Both result from the persistent
effect of the large-scale discontinuities at the small scales.

The velocity field also exhibits small-scale intermittency (Nelkin 1994, Sreen-
ivasan & Antonia 1997), and this intermittency too must be related to the large
eddy structure. Although there are phenomenological models that attempt to
describe the velocity intermittency, their connection to the Navier-Stokes equation
is uncertain. At present it is felt that the scalar problem may be more tractable.
The scalar equation is linear. Moreover scalar intermittency occurs in the absence
of velocity intermittency (i.e. the velocity field can be strictly Gaussian) as long
as there is a multiplicity of scales. The theoretical and numerical work of Kraich-
nan (1994) and of Holzer & Siggia (1994) show this, as do wind tunnel experi-
ments (see below).

Kraichnan (1968) derived exact results for the scalar field if the velocity field
is assumed to have an infinitely rapid decorrelation time (a ‘‘white’’ or ‘‘d-
correlated’’ velocity field). Exact white-noise equations for the higher-order
moments were derived by Kraichnan (unpublished data, 1994) and by Shraiman
& Siggia (1994). The consequences of these equations and their relation to KOC
scaling were analyzed by Chertkov et al (1995), Gawedski & Kupiainen (1995),
and Shraiman & Siggia (1995). In a parallel development Kraichnan (1994), using
a linear ansatz, derived a prediction for the higher-order structure-function scaling
exponents. This has provided fertile ground for the analysts (see Chen & Kraich-
nan 1998 for a comprehensive list of recent theoretical and computational work).

The issue is summarized in Figure 11, which is a plot of the scaling exponent
of the structure-function ^Dh(r)n& plotted as a function of n. As mentioned in
Section 2, KOC scaling (no internal intermittency) implies a linear relation. The
experimental and numerical data show a slower than linear increase as a conse-
quence of the internal intermittency. [The velocity scaling exponent of ^Du(r)n&
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Figure 10 A snapshot of the spatial amplitude of an evolved scalar field from the direct
numerical simulations of Chen & Kraichnan (1998) using a white noise velocity field.
White is warm. Black is cool. Although the white noise calculations are inconsistent with
the scaling exponent for the scalar structure functions determined by experiment (see text),
they do capture the qualitative characteristics of the small scale intermittency, and of the
ramp-cliff structures (which occur along the lines of demarcation between the warm and
cool fluid).

is shown too. It is significantly less intermittent than the scalar, but it too departs
markedly from Kolmogorov (1941), at higher orders].

The data in Figure 11 are from various sources and were obtained by various
methods. The first reliable data (Antonia et al 1984) are from measurements of
the pdf. Deriving the exponents this way or directly from the structure function
presents convergence problems, because, as the order increases, the information
required resides further into the tails of the pdf. Thus, in principle, very large
samples are required. Yet tests carried out in our laboratory show that the scaling
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Figure 11 The scaling exponent fn for the scalar structure function ^[Dh(r)]n& within the
inertial subrange as a function of n. Squares are from the data of Antonia et al (1984)
(heated jet), crosses are from the data of Ruiz-Chavarvia et al (1996) (heated wake),
triangles are from the data of Meneveau et al (1990) (heated wake), circles are from the
data of Mydlarski & Warhaft (1998a) (grid turbulence), and plus signs are from the full,
three dimensional Navier-Stokes numerical simulations of Chen & Kraichnan (1998). Ver-
tical bars represent uncertainty for the Mydlarski & Warhaft data. The long-dashed line
is the white-noise estimate from Kraichnan (1994). The short-dashed line is for the velocity
field from Anselmet (1984). The solid line is the KOC prediction.

exponent is not strongly affected when shorter reords are used, although the value
of the moment changes. (This point was made earlier for the velocity data by
Anselmet et al 1984.) The Antonia et al data are consistent with the (Navier-
Stokes) Direct Numerical Simulations (DNS) of Chen & Kraichnan (1998), also
shown in Figure 11. L. Mydlarski & Z. Warhaft (unpublished data) have analyzed
their active grid data and extended the set to order 16. Their data are also con-
sistent with Antonia et al (1984). Ruiz-Chavarria et al (1996) have used a form
of extended self similarity to provide a larger scaling range (Benzi et al 1993),
and their results lie on the same curve. The data of Meneveau et al (1990),
obtained from analysis of experimental data by using joint multifractal formalism,
tend to flatten out at n ; 6, suggesting stronger intermittency at higher orders.

The above measurements and computations suggest that the true curve prob-
ably lies somewhere between the Antonia et al (1984) curve and that of Meneveau
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et al (1990). It would be inconsistent with realizability (see Section 2) if the true
curve increases more rapidly than that of Antonia et al, which show an approxi-
mately linear increase above order 5 or 6 (we assume that in all data sets the
convergence is good below this order). On the other hand the possibility of a
slower increase cannot be ruled out.

The Kraichnan (1994) prediction, with the white in-time velocity field and the
linear ansatz for the molecular-diffusion terms, is also shown in Figure 11.
Although the model (by using a strictly Gaussian velocity field) shows the right
trend in the scalar intermittency, it is quantitatively inconsistent with the data.
DNS computations with white noise are also inconsistent with the Kraichnan
predictions (Frisch et al 1998, Pumir 1998, Chen & Kraichnan 1998). These
white-noise DNS computations are also inconsistent with experiments, yielding,
for example, the wrong scaling exponent for the third-order structure function
(Pumir 1998). Although the white-noise approach provides insight, it is clear that
a more realistic velocity field must be used for this problem. Experimental map-
ping of multipoint correlations for higher-than-third-order functions may provide
impetus for further advances. Any comprehensive theory will have to predict these
correlations; the two-point correlations of Figure 11 are only scant indicators of
the subtle underlying structure.

The internal intermittency can also be quantified in terms of an autocorrelation
of eh,

2 1lhq [ ^e (x)e (x ` r)&/^e & ; r , (10)e e h h hh hr

where lh is known as the scalar intermittency exponent (Chambers & Antonia
1984, Sreenivasan & Antonia 1997). Making the weak assumption that

2 4 2^[Du(r)] [Dh(r)] & ; r ^e (x)e (x ` r)&, (11)h h

which is the scalar equivalent to the common assumption (Frisch 1995) that
^Du(r)6& ; r2^e(x)e(x ` r)&, it follows from Equations 10 and 11 that

2 4 21lh^[Du(r)] [Dh(r)] & ; r . (12)

Thus lh can be related to the structure function scaling exponents, implying it
too has a universal value at high Re and Pe.

Using atmospheric data in the high-Re-number range Rk ; 103–104, Chambers
Antonia (1984) find lh 4 0.25 5 0.05. This value is supported by wind tunnel
measurements of Mydlarski & Warhaft (1998a), who determine lh over the range
90 # Rk # 700. Using multifractal techniques, Prasad et al (1988) and Meneveau
et al (1990) determine lh to be somewhat higher, in the range 0.35–0.4. We have
noted above (Figure 11) that the multifractal estimate of the scalar structure func-
tion exponent also departs from those obtained by using more direct methods.
[The value of l for the velocity field is fairly well established to be ;0.25 (Sreen-
ivasan & Antonia 1997).]

The grid turbulence measurements of lh by Mydlarski & Warhaft (1998a) show
little trend with Rk (Figure 12). At their low Rk (;100), lh ; 0.2, whereas l, the
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Figure 12 The velocity and scalar-intermittency exponents, l and lh, respectively,
as a function of Rk. Open circles are for l determined from the autocorrelation of e11

[; ^(]u/]t)2&]. Plus signs are for l determined from e12 [; ^(]v/]t)2&]. Solid circles are for
lh determined from the autocorrelation of eh [; ^(]h/]t)2&]. From Mydlarski & Warhaft
(1998a).

intermittency exponent for the velocity, was found to be close to zero (only
becoming significant for Rk . 200). These results experimentally confirm that
inertial subrange intermittency in the scalar can occur in the absence of intermit-
tency in the velocity field (Kraichnan 1994, Holzer & Siggia 1994, Chen &
Kraichnan 1998).

6. THE INTEGRAL-SCALE CHARACTERISTICS: THE
SCALAR PDF, VARIANCE, COVARIANCE, AND FLUX

Up to this point, we have addressed inertial and dissipation scales. Much research
has been devoted to these scales because of the expectation of universality.
Although we have shown that, in fact, the integral-scale characteristics cannot be
ignored, this should not make the study of the small scales less important. To
numerically simulate the scalar (and velocity) field, the inertial and dissipation
scales are often modeled (in such schemes as Large Eddy Simulation; Galperin
& Orszag 1993), so that the immense volume of data can be managed. Thus there
is a practical need for a deep and accurate understanding of the physics of the
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small scales, so that their parameterization will be correct. Yet, for the engineer,
the integral scales are of particular significance in themselves, because, to estimate
transport and mixing, the scalar variance, flux, and covariance, must be known.
We now turn to those quantities, beginning with the scalar pdf itself.

6.1 The Scalar pdf

The data in Figure 3a and b show that, as r increases, the kurtosis of the scalar
difference approaches the Gaussian value of 3. Earlier measurements of the scalar
pdf in homogeneous turbulence (Tavoularis & Corrsin 1981a) also indicated that
a Gaussian distribution was a satisfactory model for the scalar signal itself. How-
ever, unlike the spectrum and structure function, the pdf did not receive serious
attention, presumably because of an implicit (and wrong) assumption that the
central limit theorem would constrain the pdf to be Gaussian in homogeneous
flows. Yet the Chicago convection experiment (Castaing et al 1989, Siggia 1994),
which showed that, under certain conditions, the (nonpassive) scalar pdf had
exponential tails, motivated a deeper look at this problem. Notably, Pumir et al
(1991) developed a phenomenological mean-field model that showed that, if a
passive mean scalar gradient is present, the scalar pdf will have exponential tails.
This was cast in more rigorous terms with Lagrangian path integrals by Shraiman
and Siggia (1994). The exponential tails are the result of anomalous mixing; they
arise from improbable events in which a parcel of fluid moves a distance much
greater than the integral-length scale without equilibrating. Shraiman & Siggia
(1994) show that this occurs for a typical fluid path for which the mixing rate is
anomously long rather than for a typical mixing rate but with an atypical path.

The Pumir, Shraiman, & Siggia (PSS) prediction gave rise to a spate of papers;
theoretical, experimental, and numerical. Holzer & Pumir (1993) derived the PSS
theory by using the Kerstein (1991) linear eddy model, which describes turbulent
mixing as a collection of instantaneous local rearrangements of the scalar fol-
lowed by diffusion. They also implemented the Kerstein model numerically and
found nearly exponential tails in the presence of an imposed linear mean-scalar
gradient. Kerstein & McMurtry (1994) generalized the mean-field analysis of
Holzer & Pumir (1993) and also used the Langevin equation to represent the
concentration time history within a fluid element. They found general agreement
with PSS but argue that PSS makes restrictive modeling assumptions. They sug-
gest a wider possible range of pdf tails. Earlier, Sinai & Yakhot (1989) had
deduced an exact closed-form solution for the scalar pdf equation with no mean
gradient. They showed that the pdf is determined by the conditional expectation
of the scalar dissipation rate. This result was generalized by Pope & Ching (1993),
who showed that the pdf of any stationary process can be obtained exactly from
the conditional expectations of time derivatives of the same signal. Although
providing a connection, these formal results do not solve the problem. Further
discussions about the conditional dependence between the scalar and its dissi-
pation can be found in work by O’Brien & Jiang (1991), Sahay & O’Brien (1993),
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Eswaran & Pope (1988), Mi & Antonia (1995), Jayesh & Warhaft (1992), and
Anselmet et al (1994).

The experimental evidence is as follows. Gollub et al (1991) and Jayesh &
Warhaft (1991) (see also Lane et al 1993 and Jayesh & Warhaft 1992), showed
that, in grid-generated turbulence, there are clear exponential tails in the presence
of a mean gradient (Figure 13). The turbulence-generating mechanisms and mea-
surement techniques were quite different in the two experiments. In the Gollub
et al (1991) experiment, an oscillating grid (in water and in water glycerol
mixtures) was located between constant-temperature, hot and cold oil baths,
which provided the mean temperature gradient. In the Jayesh & Warhaft (1991)
experiment, a conventional grid was used, with the air differentially heated (to
form the linear temperature gradient) in the tunnel plenum (Sirivat & Warhaft
1983). Jayesh & Warhaft (1991, 1992) verified that the velocity field itself was
Gaussian. They also showed that, in the absence of a mean gradient or when the
scalar gradient was symmetric but nonlinear (a thermal mixing layer with an error
function profile; Ma & Warhaft 1986), the pdf of the scalar did not exhibit expo-
nential tails (in fact, for the thermal-mixing layer, it was slightly sub-Gaussian).
These experiments corroborate the PSS theory.

Both in the Gollub et al (1991) and Jayesh & Warhaft (1991) experiments, it
was found that the Re had to be above a threshold value (Rk . 30 in the Jayesh
& Warhaft experiment) before the exponential tails occurred. Moreover, these
experimentalists recognized that the apparatus had to be $8 integral scales wide,
or the tails are lost because of wall effects. It is therefore unsurprising that Tho-
roddsen et al (1998) (in grid experiments) and Overholt & Pope (1996) (in DNS)
did not observe exponential tails, because their experimental or computational
domain was too small, and that Kimura & Kraichnan (1993) and Rogers et al
(1989) did not observe them (in their DNS) because the Re was too low (and
possibly because their computational domain was too small also).

In a somewhat more complex experimental situation of turbulent pipe flow
mixing, Guilkey et al (1997) observed scalar exponential tails, similar to those
of Figure 13b. In their experiment there is a significant scale separation of the
scalar and velocity fluctuations, such that the low-wave-number scalar fluctua-
tions act as the imposed mean-scalar gradient, providing a similar situation to the
grid experiment. Other numerical experiments (Jaberi et al 1996, Ching & Tu
1994) observe exponential tails in the presence of mean gradients, as well as
under other conditions for which the relationship to real experiments is unclear.

Two broad points need to be made. First, it is now quite evident that the scalar
signal need not be Gaussian, even in homogeneous turbulence for which the
velocity field itself is Gaussian. The remarkable result is that theory and experi-
ment show the existence of super-Gaussian (exponential) tails for a linear scalar
gradient. This indicates departure from uniform mixing under the simplest of
boundary conditions.

Second, this result is of more than academic significance. Figure 13b shows
that the probability of a rare event, for example, at 4 standard deviations, is around



Figure 13 The probability density function (pdf) of the passive scalar signal, h. (a) From Gollub et al (1991). (b) From Jayesh & Warhaft
(1992) [see also Jayesh and Warhaft 1991]. Each pdf has been shifted one decade from the next lower one. The distance from the grid is
x/M 4 36.4 (lowest curve, compared with a Gaussian curve) to x/M 4 132.4. The Rk is 74.4 at x/M 4 62.4.
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103 higher than the value expected for a Gaussian distribution with the same
variance. In the atmosphere, dispersion downwind from a point or area source of
very small quantities of highly toxic substances can be harmful or deadly. Thus
attention will have to be paid to the tails of the scalar pdf, which are at present
assumed by pollution agencies to be Gaussian. Similarly, combustion and mixing
both in the atmosphere and laboratory may be affected by the tails of the
distribution.

6.2 The Scalar Variance, Flux, and Covariance

So far we have considered passive scalar statistics at a single position in the flow,
without regard to their evolution. Most engineering problems require information
on how the scalar variance and flux vary with position (and time). This is a large
subject, compounded by the many variations in boundary and initial conditions
of interest to the engineer. Here we summarize some of the more general aspects.

The way an excited system relaxes back to an equilibrium state is a general
problem in mechanics. When stirring suddenly ceases in a fluid (or when a smooth
velocity field passes through a grid), the question of how long the velocity fluc-
tuations take to decay is central and unsolved (Batchelor 1953, for recent advances
see George 1992, Speziale & Bernard 1992, Mohamed & LaRue 1990). If scalar
fluctuations (in the absence of a mean gradient) are also induced at or near the
turbulence-generating grid, at what rate does their variance decay? The governing
equations are

2Ud^q &/dx 4 1^e& (13)

and

2Ud^h &/dx 4 1^e &, (14)h

where ^q 2& [ 1⁄2[^u2& ` ^v 2& ` ^w 2&] ; 3/2 ^u2& is the turbulence kinetic energy
per unit mass.

Warhaft & Lumley (1978) showed that the decay rate of ^h2& is a function of
the ratio of the initial velocity to scalar length scale (determined from the spec-
trum). As the initial length scale ratio was increased, so too was the decay rate
of the scalar variance. They described their results in terms of the ratio of mechan-
ical to thermal time scales r [ s/sh 4 (^q2&/^e&)/(^h2&/^eh&), which varied from 0.9
to 2.4, depending on the wave number at which the thermal fluctuations were
introduced. Further experiments (for ,h significantly less than ,) were done by
Sreenivasan et al (1980) and, for both helium as well as temperature fluctuations,
by Sirivat & Warhaft (1982). It might be thought that, far downstream, the tur-
bulence would force r to some universal value. Warhaft (1984) shows that, even
at 500-grid-mesh lengths, this does not occur. However, DNSs by Eswaran &
Pope (1988) find that, after a long period, the thermal variance decay rate becomes
independent of the initial conditions. There is also evidence of some relaxation
from the initial value of r in the stochastic pair-dispersion model of Durbin (1982).
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The problem is basic and needs to be resolved. The scalar field may be considered
as the superposition of multiple-point or line sources (Durbin 1982, Warhaft
1984). At issue is how the variance from a line (or point) source evolves? What
is the asymptotic value of ^h2&/T2? (Here T is the mean value of the scalar above
ambient.) Headway has been made using particle dispersion theory (Durbin 1980,
1982, Lundgren 1981, Sawford & Hunt 1986, Stapountzis et al 1986, Thomson
1986, 1990, Borgas & Sawford 1994). In nondecaying flows, ^h2&/T2 tends to
order 1 (Sawford et al 1985, Fackrell & Robins 1982), but in decaying grid
turbulence the issue is far from settled (Warhaft 1984, Stapountzis et al 1986, Li
& Bilger 1996).

The complexity arises because molecular diffusion and viscosity, as well as
source size, play an important role even far from the source (Stapountzis et al
1986, Sawford & Hunt 1986, Borgas & Sawford 1996). It is properly addressed
by means of Lagrangian dynamics, yet there is a lack of high-Re-data of Lagran-
gian measurements, and this impedes modeling attempts. For example, the Kol-
mogorov constant for acceleration variance is still poorly determined (e.g. Du et
al 1995, Voth et al 1998) with estimates ranging from 3 to 7. Here there is a
promise of progress in the near future, with the fast particle-tracking technique
being developed by Bodenschatz’s group (Voth et al 1998). There is also progress
in this area from DNS (Yeung & Pope 1989).

The problem becomes a little simpler if a linear temperature profile is imposed
on the grid turbulence (Corrsin 1952, Wiskind 1962). Here the mean profile forces
the timescale ratio to a constant value (of ; 1.5), irrespective of its initial value
(Sirivat & Warhaft 1983, Budwig et al 1985), and success in modeling this flow
has been achieved by using simple closures (e.g. Shih & Lumley 1986, Rogers
et al 1989). Because there is a mean profile, there is a transverse heat flux, qcp^hv&.
This is the simplest heat flux experiment that can be done, yet the Nusselt-Re
number dependence is not well established. [The Nusslet number is the ratio of
the total heat flux to the molecular heat flux and, for moderately high Re numbers,
it can be estimated as ^hv&/(kdT/dy), where k is the thermal conductivity.] In
decaying grid turbulence Jayesh & Warhaft (1992) found that

0.88Nu 4 0.73Re (60 # Re # 1100), (15), ,

where Re, [ ^u2&
1⁄2,/m. In their shaking-grid experiments (also done with a linear

temperature profile), Gollub et al (1991) found that

0.64Nu 4 0.32Re (150 # Re # 3000). (16)

Here the Re was obtained from bulk parameters, and so the relationship to the
turbulence Re, is not direct and may account for the differences in the exponent
in the two experiments. Differences in the Re regimes and flow geometry may
also play a role. More experiments are needed.

Because there is a heat flux, there is a cross-spectrum between h and v, Fhv(k1).
Dimensional arguments for Fhv(k1) [and for Fuv(k1), the Re stress spectrum in shear
flow] indicate a k17/3 dependence (Lumley 1967). That the scaling suggests
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a faster decrease with wave number for Fhv(k1) than for Fh(k1) is consistent with
local isotropy, because h and v (or u and v) should be uncorrelated at high wave
numbers. Both Tavoularis & Corrsin (1981b) in homogeneous shear flow with a
linear temperature profile and Mydlarski & Warhaft (1998a) in decaying grid
turbulence show that the return to isotropy of ^hv& is slower than that of ^uv&;
that is, Fhv(k1) does not decrease as fast as 17/3. Mydlarski & Warhaft (1998a)
attribute this to a low-Re-effect (although they do not see a significant change
with the Re). There appear to be no high-Re-measurements to compare with the
Fuv(k1) measurements of Saddoughi & Veeravalli (1994), who find good confir-
mation of the 7/3 law for the shear stress. The subject requires further attention
because the available results may suggest that Fhv(k1) is being affected by small-
scale anisotropy. Resolution of this issue is necessary for modeling of the scalar
flux in such procedures as LES.

In turbulent mixing and reactions, the way in which two separate fluctuating
scalars are correlated and how the correlation evolves are of paramount impor-
tance. For example, for a one-step irreversible second-order chemical reaction
between chemical species A and B in an isothermal flow (A ` B r C ` D), the
diffusion equation for the mean concentration ^C&, of A or B is (Mao & Toor
1971, Bilger 1989, Komori et al 1991a)

]^C&/]t ` U ]^C&/]x 4 ][j(]^C&/]x ) 1 ^u c&]/]xi i i i i

1 K[^C &^C & ` ^c c &], (17)A B A B

where C and c are the instantaneous and fluctuating concentrations, j is the molec-
ular diffusivity and K is the chemical-reaction-rate constant. The way cA and cB

are correlated can change the sign of the mean chemical rate term (second term
on the right). This correlation is expressed in the normal way as q [ ^cAcB&/(^ &

1⁄22cA

^ &
1⁄2) or as a [ ^cAcB&/(^CA&^CB&), where a is called the segregation coefficient.2cB

If a 4 11, there is no molecular mixing. A study of a and q has been made by
Komori et al (1991a) for non-premixed reacting flows with a Lagrangian sto-
chastic model, and DNS studies of two-scalar mixing without reaction, including
the evolution of their joint pdf, have been performed by Juneja & Pope (1996).
Both q and a are strongly dependent on the Re, Schmidt number, and Damköhler
number (the ratio of the turbulence time scale to the reaction rate time scale) and
also vary widely within a particular flow. For example for two plumes introduced
separately into a fluid, Warhaft (1984) shows that q ; 11 close to the sources,
where the plumes are being flapped in synchronism by the turbulence, to `1 far
downstream, where the plumes have mixed. These results have been confirmed
in the boundary-layer measurements of Sawford et al (1985). a too shows wide
variation (Bennani et al 1985, Komori et al 1991b, Li & Bilger 1996, Tong &
Warhaft 1995). A systematic study of different flows is still lacking, and there is
controversy even concerning the sign of a in some flows (Bilger et al 1985,
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Komori et al 1991a). Measurements of a for atmospheric mixing, in which accu-
rate knowledge of reactions involving HNO3, O3 and other species are badly
needed, are practically nonexistent (see e.g. Pyle & Zavody 1990).

Finally, for reactions more complex than one-step second-order (Equation 17),
turbulence information, in addition to the covariance itself, is needed to model
the reaction rates (Bilger 1989). Here knowledge of the fine-scale structure itself
may be required. This is also the case for the mixing of two passive scalars with
different diffusivities (e.g. Yeung & Pope 1993). Problems such as these provide
further motivation for the study of small-scale dynamics discussed in the earlier
parts of this review.

7. SCHMIDT NUMBER EFFECTS

Much of the visual information concerning passive scalars has come from flow
imaging of dye in liquids (e.g. Buch & Dahm 1996, Karasso & Mungal 1996,
Catrakis & Dimotakis 1996, Williams et al 1997, Huq & Britter 1995). These
experiments tend to confirm the in situ point measurements elaborated in this
review, that is, that there are sharp gradient sheets or fronts in the scalar field that
we have characterized as ramp-cliff structures. For these liquid experiments the
Schmidt number Sc [[ m/j where j is the molecular diffusivity of the scalar
(usually a fluorescent dye)] is high, of order 103. This does not change inertial-
range characteristics. For example, Miller & Dimotakis (1996) show that the
scalar spectra for Sc ; 2000 in a jet follow a similar evolution with Re to that
observed in gas flow experiments (e.g. Dowling & Dimotakis 1990); that is, the
magnitude of the spectrum slope is significantly less than 5/3, tending to 5/3 only
at very high Re (as in Figure 4).

Yet for high Sc, there are two dissipation scales or wave numbers (Tennekes
& Lumley 1972): the Kolmogorov wave number for the velocity field kg [
(e/m3)

1⁄4 and the Batchelor wave number for the scalar kgh [ (e/mj2)
1⁄4. For high

Sc, kgh . kg, and the velocity fluctuations are dissipated at lower wave numbers
than the scalar fluctuations. In the wave number interval kg , k , kgh (known
as the viscous-convective range), the random velocity field varies linearly with
position, and Batchelor (1959) predicted that the scalar spectrum should display
a k11 dependence. The experimental evidence has been elusive, and here we
mention the most recent results.

In their turbulent jet experiment, Miller & Dimotakis (1996), paying particular
attention to probe resolution and the signal-to-noise ratio problems that have
plagued earlier experiments, find no k11 scaling region, despite a relatively high
Sc (;2000). In an altogether different experimental set up, Williams et al (1997)
studied passive scalar mixing in magnetically forced two-dimensional turbulence.
Here too the Sc was 2000. They found that the scalar spectrum fell strongly below
k11, again inconsistent with the Batchelor prediction. Williams et al (1997) sur-
mise that intermittency in the velocity field may have affected their results. We



PASSIVE SCALARS IN TURBULENT FLOWS 233

note that in both experiments, the wave number range of the viscous-convective
range at these Sc numbers is ,1.5 decades. Our knowledge of inertial-range
spectra would be poor if this was the maximum wave number range at our dis-
posal. There is strong reason that the k11 region should exist (Kraichnan 1968,
Holzer & Siggia 1994), and more experiments are needed.

8. CONCLUDING REMARKS

The study of passive scalars is exciting because the richness of the new phenom-
ena was not easily envisioned. That a passive additive, obeying a linear equation,
displays characteristics so different from those of the advecting velocity field is
remarkable. The existence of exponential tails in the scalar signal while the veloc-
ity is Gaussian; the strong inertial subrange intermittency in the scalar, which
occurs at low Re where intermittency in the velocity field is absent; the contrast
between the scalar and velocity spectra; and the anisotropy, both at dissipation
and inertial scales, are all departures from expected behavior. They must play a
determining role in mixing, dispersion, and reactions, and the way we model
them. Thus the new findings provide intellectual challenge and yet are of practical
importance.

The issue of the scalar anistropy has been particularly emphasized. Our focus
has been on the skewness (third-moment) statistics, particularly in the inertial
range. Not only is it a violation of the cornerstone of turbulence theory—the
notion of local isotropy—but we believe that its study provides a program toward
understanding the intermittency problem itself. The approach outlined in Section
4 indicates the direct link between the large and small scales and thus the inad-
equacy of a simple step-by-step cascade model. The three-point correlations entice
us to look at the scalar field in new ways. We believe that the approach used for
the scalar problem could also shed light on the inertial- and dissipation-range
velocity structure, where measurements and computations at moderate Re have
shown that skewness on the order of 1 is also observed, in violation of inertial-
range isotropy (Tavoularis & Corrsin 1981b, Pumir & Shraiman 1995, Pumir
1996b, Garg & Warhaft 1998).

Finally, it should be apparent from this review that the subject of passive
scalars is vast. My focus has inevitably been on work with which I have been
involved, and there are omissions that may appear to some as egregious. There
has been little mention of the overall budget of scalar variance and heat flux in
the standard laboratory flows and nothing about complex flows [a topic last
reviewed by Hunt (1985)]. The viewpoint has been experimental, and even here
little has been said about the exciting diagnostic tools that are being developed.
The subject of fractals, which may well provide new interpretations of the data
(Sreenivasan & Meneveau 1986, Prasad et al 1988, Sreenivasan et al 1989, Fred-
eriksen et al 1997, Miller & Dimotakis 1991, Villermaux & Gagne 1994), has
not been addressed. We note, curiously, that this is the first annual review of the
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subject of passive scalars. Let us hope it will not be too long before this vital
topic will again be addressed from other perspectives.
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